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Boundary effects on the dispersion force between oscillators 

J Mahantyt and B W Ninhamz 
Research School of Physical Sciences, Institute of Advanced Studies, The Australian National 
University, Canberra, ACT 2600, Australia 
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Abstract. A general theory is developed to study the effect of boundaries on the dispersion 
interaction between molecules in a bounded region. By way of illustration the method is 
applied to the study of the interaction between two oscillators located between two con- 
ducting plates. When the oscillators are separated by a distance larger than the plate separa- 
tion the force law becomes considerably different from London and Casimir-Polder results. 

1. Introduction 

When two molecules are placed in a bounded region, such as a box or a channel, the 
dispersion force between them is expected to be different from what it is when they are 
in free space. The difference arises from the dependence of the structure of the modes 
of the electromagnetic field in the region on the boundary conditions, a point that has 
already been noted in the quantum electrodynamics of charged particles in such situa- 
tions (Barton 1970). The simplest formulation of the problem can be made in semi- 
classical terms (Mahanty and Ninham 1972, to be referred to as I), in which the molecules 
are regarded as point-dipole oscillators coupled to each other through the electro- 
magnetic field. The dispersion interaction is the difference between the zero-point 
energy of the coupled oscillator system and that of two single oscillators. The effect of 
the boundary enters through the structure of the Green functions of the electromagnetic 
field that determine the coupling between the oscillators. 

To see this explicitly, we start with the equations of motion of two isotropic oscillators 
of natural frequency w o ,  charge ( - e )  and mass m, in time independent (Fourier trans- 
form) form, 

(1) 
iwe 

m(w;-w2)u,(w) = - d ( R j ,  w ) + e V 4 ( R j ,  w ) ;  j = 1,2.  
c 

Here uj  is the displacement from equilibrium of the j th oscillator, and R j  is the coordinate 
of its equilibrium position, as also that of the core positive charge ( + e )  which is assumed 
to be stationary. The time independent equations of motion of the vector and scalar 
potentials d and 4 are (in Coulomb gauge), 
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with 

V . d  = 0, 

and 

The vector and scalar potentials d and 4 can be eliminated in equation (1) by 
solvingfor &‘and4 fromequations(2)and(3),and we then obtain the secular determinant 
for the coupled oscillator system in the form, 

m ( o i - w 2 ) I + 4 n e Z 9 ( R 1 ,  R , ;  w)  

4ne29(R , ,  R I  ; w)  

4 n e 2 9 ( R , ,  R ,  ; w)  

m(wi - w2)1 + 4ne29(R , ,  R ,  ; w)  
D,,(w) = 

Here, the diadic Green function Ce(r, r’ ; w )  is given by, 

( 5 )  
w2 

9 ( r ,  r ’ ;  0) = TG‘2) ( r ,  r ’ ;  w)-VV’G(’)(r,  r’ ) ,  
C 

where G(’)(r,  U’) is the Green function of the equation 

v2q5 = 0, 

and G‘2)(r,  r ’ ;  w )  is the diadic Green function of the equation 

( V 2 + $ ) d  = 0 (7) 

with the appropriate boundary conditions. (VV’)  is the diadic operator formed out of 
the gradient operators operating on the unprimed and primed coordinates. 

The dispersion interaction energy can be evaluated by the formula (see I), 

where R = IR, - R,I, and 

Djw) = 1 m ( w ~ - w Z ) I + 4 n e 2 9 ( R j ,  R j ;  w)l. 

To order (e4) the formula for E(R)  becomes, after some simplification, 

Tr(9(Rl ,  R ,  ; - it)%@,, R ,  ; - it))). d5 
- y( j: + < 2 ) 2  

(9) 

The use of Coulomb gauge separates out the non-retarded form of 9 in equation (5) 
explicitly, so that in the non-retarded limit, with c .+ CO, equation (10) becomes, 

Our analysis will be based on equations (10) and (1 1). 

2. The structure of the Green functions 

The main difference between the structure of the Green functions in free space and in 
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bounded regions arises out of the discretization of some or all the modes of the electro- 
magnetic field in the bounded region. The precise boundary conditions to be used 
depend on the physical properties of the boundary, such as its dielectric constant or 
conductivity. 

The general theory of the Green functions G(')(r, r')  and G(2)(r ,  r ' ;  w )  is well known 
(Morse and Feshbach 1953) and can be adapted suitably to be applicable to this problem. 
G(') can be constructed out of the solutions of the scalar equation, 

V2x,(r) = M r ) ,  (12) 

where x,(r) is suitably normalized and satisfies the same boundary conditions as 4. 
Then, 

The diadic Green function G ( 2 )  is obtained from the divergence-free vector solutions 
of equation (7), or equivalently, of the equation, 

V2F,(r) = AF,(r). (14) 

The two independent divergence-free solutions of this equation can be written in the 
form, 

= v x Wi), (154 

where $,, $> satisfy equation (12), and k (having the dimension of a wavenumber), 
the direction of the unit vector U and the relative magnitudes of M ,  and N ,  are suitably 
adjusted to make the function F, = M A +  N ,  satisfy the right boundary conditions. 
Both M ,  and N ,  can be normalized as, 

(M: . M i , )  d3r =f (NX . Ni.,) d3r = A, hi, , , .  

Then 

where M,Mf and N,Nf are the diadics formed out of the vectors M ,  and Ni, ,  

3. The oscillators between conducting plates 

We shall apply the above formalism to the situation in which the two oscillators are 
located between two parallel perfectly conducting plates with separation L. Here the 
tangential component of the electric field and the electrostatic potential vanish on the 
plates. Choosing a coordinate system in which the origin is on one of the plates and the 
z axis normal to the plates, and using the boundary conditions, 

at z = 0, L, (18) a d z  dx = 0 = dy; - = 0  and + = O  
a Z  
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we obtain the following expressions for the Green functions: 

G(’)(r ,  r’) = -- 1 5 . (n;) . ( n y ’ )  sin - sin - 

dk, dk, exp[i{ kl(x - x’) + k2(y - y’))] 
k,Z 

2n2L n =  1 

9 

“ 1  dk, dk, exp[i{k,(x-x’)+k,(y-y’)}] 
c,,(2n2L) / (w2/c2-ki){ 1 -(n2n2/kiL2)} 

G‘2’(r, r ‘ ;  w)  = 1 ~ 

x {  ~ ( a , k 2 - a 2 k l ) ( a , k 2 - a 2 k , ) s i n  (n; )  - sin . ( n y ’ )  - 

(n:) . ( n y ’ )  
(a ,k ,+a ,k2 ) (a ,k ,+a ,k , ) s in  - sin - 

-’( + k;)(a,k, +a2k2)(a3) sin 
k,4 L 

(k:+ k:)(a3)(alk, +a2k2) cos 

1 +T(k: + k;)’(a3)(a3) cos 
k n  

sin ( F) 
Here 

k,Z = k:+k:+jF); n2n2 

= 2  for n = 0, 

for n # 0, fn{= 1 

and al  , a,, u3  are the unit vectors in the x, y and z directions. Expressions of the sort 
(aukb -a,k,)(a,k,) represent the diadic formed out of the vectors (aakb - a,k,) and 

From equations (19), (20) and (5) the explicit form of 3 ( r ,  r’ ; w )  can be written as, 
(ark,). 

where 

2n2L 1 “  z, sin( y) sin[%) 
g, ( r , r ’ ;  w )  = - 

dk, dk, exp[i{k,(x-x’)+k,(y-y’)}] 
w2/c2  - k: 2 
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nn(z + z ' )  
g2(v, P' ; w) = - 

dk, dk, exp[i{kl(x-x')+k2(y-y')}l 
€,(W2/C2 - k,Z) 

For notational convenience we shall define a variable p = {(x-x'), + ( y - y 0 2 )  1'2 

and obtain the dispersion interaction between the oscillators when the distance 
p 1 2  = ((xl - ~ , ) ~ + ( y ~  satisfies the condition p12 >> L, and when L >> R. 

3.1. Interaction in the non-retarded limit 

This limit, obtained for c ---f x corresponds to the situation when both L and R (and 
hence p )  are much less than the characteristic wavelength io = 2nc/w,. We shall use 
equation (1 1). When p >> L an appropriate form of G(')(v ,  v') is (see 

1 OC 

nL "= 1 
( n z p )  sin . (n;) -- sin . (nzz ' )  - . G'"(v, v') = -- C K O  - 

For large (p/L), i t  is sufficient to retain only the (n = 1) term and 
form for K,(np/L). Substituting this G") in equation (1 1) we get, 

For large L, an appropriate form of G(' ) ( v ,  v') is, 

appendix), 

(23) 

use the asymptotic 

where K = (k :+k: )"2 .  In the appendix the form of G(')(v ,v ' )  for a number of cases 
corresponding to different relative values of z,z' and L are given. Using these in 
equation (1 1) we get the following forms for E(R) for those cases. 

For (zl +z, - L) K L,  that is, when the oscillators are nearly in the middle of the two 
conducting planes, 

where E(R)London = - 3he4/4m20iR6 is the non-retarded London interaction between 
the oscillators in free space. It may be noted that on the medial plane, that is, when 
z1 = z 2 ,  the interaction is diminished from the London result for free space. But when 
/zl  -z21 > (p12/J2) the interaction is enhanced from the free space value. 

For (2,  +z,) << L, that is, the oscillators are close to one of the conducting planes, 

which implies a reduction from the London value by a factor 3 .  
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For (zl + z2) - L, that is, the oscillators are placed one near each conducting plane, 
the corresponding result is 

where the neglected terms are O ( P ~ , / L ) ~  and O{(lzl fz, l-  L) /L i2  

3.2. Interaction in the retarded region 

In this region we have to use the Green function of equation (21). Again we consider 
the two cases, p l z  >> L and L >> R. For p >> L the appropriate form of the Green function 
g,(r, r‘;  w )  of equation (22 )  is, 

with a similar expression for g,(r, r’; -i t) .  The algebra involved in using these Green 
functions in equations (21) and (10) is tedious but elementary, and we find, 

192 hce4 1 E(R) N -- __- 
7c m2w: L’p:,’ 

This is a curious result, since it represents an enhancement from the Casimir-Polder 
result for free space (Casimir and Polder 1948). 

For the case R << L the required manipulations are very much more complicated 
and we shall simply quote the results. The method of their derivation is given in the 
appendix. 

For (Rwo/c) << 1 ,  and L << /lo we have, 

For (Ro , / c )  >> 1, and L>> Lo we have, 

where 

is the retarded interaction result of Casimir and Polder (1948). Here also, as in 
equation (26a), the interaction is reduced for /z l  -z21 < ( p 1 2 / J 2 )  and enhanced for 
Izl -z2( > (p12/J2). From equation (29) one can recover the London result for L -+ CO, 
but not for c -+ m with fixed L ,  as the condition under which the expansion is derived 
is for L << /lo. The results for c -, m with fixed L are already given in equation (26). 

4. Conclusion 

While the method developed here has been illustrated in the specific problem of the 
interaction of oscillators between conducting plates, it can be extended to study the 
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interaction between molecules confined within arbitrarily shaped containers with 
dielectric boundaries. It is clear from the above analysis that the dispersion force 
changes markedly in bounded regions-in a narrow channel there is considerable 
reduction from the free space value in the non-retarded case, and increase in the retarded 
case. 

For the problem of resonance energy transfer between two molecules in a bounded 
region, a similar semiclassical formulation can be developed. The effect of containment 
of two molecules in a channel is a marked enhancement in the process of resonance 
energy transfer (Mahanty and Ninham 1973). 

Appendix 

We have used several forms for the Green functions and indicate the method ofderivation 
of the results given in the text. 

Consider the function g ,  , defined by equation (22b). We have (in the notation of 0 3), 

(‘4.1) 
-g , ( r ,  Y I .  ; -15) = - 1 f sin( 7) sin( F) Jy rc drc J” de exp(ircp cos 0) 

2x’L ”= 1 <’/c’ + K’ + n2xZ/L2‘ 

If we perform the K and 0 integration according to the formula, 

dK 
JOzff dB exp(kp COS 0) JOm t’/c’ + n’x’/L’ + K’ 

we obtain equation (27). For c + to, ( -gl) --* G(’) of equation (23). 

1958) before doing the ( K ,  0) integration, we get 
If in equation (A.l) we sum over n using Poisson’s summation formula (Lighthill 

1 K dKJO(Kp) exp(KL) 
-g , ( r ,  r ’ ;  - i t )  = - 

277 J0 K {  exp(2KL) - 1) 

where K = (K’ + <z/c2)1/2. Using the identity, 

where R = {(z -2’)’ + p ’ }  ”’, equation (A.3) can be re-arranged to give, 

x [cosh{ K(z - z’)} -cosh{ K ( z  + z’ - L)} exp(KL)] . (A.5) 1 
In this form the free-space Green function is exhibited explicitly together with the 
correction term arising out of the boundary effects. 
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The results of equation (26) are obtained from the non-retarding form of equation 
(A.3, with the substitution 2Lu = t, 

1 1 1 dtJo(pt/2L) 
4n[R L Jo exp(t)-1 

G“)(r,r’) = - -+- 

Since the main contribution to the integral comes from the neighbourhood of t + 0, 
the Bessel function and cosh function are expanded in power series and integrated term 
by term to give us, 

1 [ 1 2{  
[ ( z - z ’ ) 2  p2 ) G(’)(r,r’) = - -+- -1n2+ 2-- 

4n R L 8L 16L2 5(3 )  

( z  + z‘ - L)2 -&)a3,ii+0( q4}] - (  8L2 

+T { 3 p 2 - 7 ( z + z ‘ - L ) 2 + ( z - z ’ ) 2 j  + . . . 1 1 2 In 2 c(3) _ -  
-47c(R L 4L 

Here C(3,i) is a generalized zeta function (Whittaker and Watson 1952) satisfying the 
relation [(s, i) = (2’- l)i(s). The diadic (VV’)G(’)(r, U’) is then constructed trivially. 
This leads to the result of equation (26a). For the results of equations (26b) and (26c) 
the starting point is again equation (A.6) in the following modified forms: 

1 dtJO(pt/2L) exp(t/2) z - z’l - L)t z + 2’1 - L)t 
G(’)(r, r’) = 4TIL jo exp(t) - 1 {cosh( (I 2L ) -cosh( (I 2L ) j(A.9) 

where R ( + )  = { ( z + z ’ ) ~  + P ~ } ” ~ .  Therest oftheprocedureissimilar,involvingexpansions 
of the Bessel and cosh functions. 

To obtain the results for R << L in the retarded case, i t  is convenient to start with 
( -  8,) in the form, 

which can be obtained from equation (27) by using Poisson’s summation formula. Here, 
Rf = (21L + Iz - z’l)’ + p2, and R;’ = (21L + Iz + ~ ’ 1 ) ~  + p2. 

One can use the formula (Watson 1958), 
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to write, 

(A.12) 

This expansion is permissible since 21L >> R, ( 1  # 0). To expand the second sum over 
{exp( - tR;/c)/R;}, we write 

(A.13) 

Then, 

R;’ = {2L(1+ P ) } 2  + 2L(I + P)(R”) ( + zL: 2LP) + (R“)’, 

where (R”)2 = ( z  + z ’ -  2Lj)’ + p2 .  Since R” << 2L(1 + P ) ,  we can use equation (A . l l )  
to write 

I ’ = O  I =  1 

We can now use equations (A.12) and (A.14) in equation (A.lO) to write, 

(A.14) 

(A.15) 

Here g‘,’) is the correction to the free-space Green function. 
After construction of the diadic of equation (21) ,  the integration over 4 in equation 

(10) can be done by expanding the Bessel functions ll ,++(Rt/c), Il.++(R”t/c) in powers of 
(tR/c), (tR”/c) and retaining terms of order { ( ( R / ~ C ) ” ~ / J R } ,  { ( ~ R ” / ~ C ) ~ ~ ’ / J R ) .  
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